
On some differential invariants for a family of diffusion equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 8803

(http://iopscience.iop.org/1751-8121/40/30/013)

Download details:

IP Address: 171.66.16.144

The article was downloaded on 03/06/2010 at 06:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/30
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 8803–8813 doi:10.1088/1751-8113/40/30/013

On some differential invariants for a family of
diffusion equations

M L Gandarias1, M Torrisi2 and R Tracinà2
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Abstract
The equivalence transformation algebra LE and some of its differential
invariants for the class of equations ut = (h(u)ux)x + f (x, u, ux) (h �= 0)

are obtained. Using these invariants, we characterize subclasses which can
be mapped by means of an equivalence transformation into the well-studied
family of equations vt = (vkvx)x .

1. Introduction

Nonlinear diffusion equations are employed as mathematical models for several phenomena:
transport in porous media, thermal conduction, evolution of bacterial colonies, plasma physics,
soil water motion, combustion, to cite few.

Several cases of diffusion equations have been deeply studied in the framework of
transformation groups (classical and nonclassical symmetries, Bäcklund transformations,
approximate symmetries) and a lot of results have been found concerned with the features of
some exact solutions or concerned with the integrability of someone of them (see e.g. [1–3]).

In this paper, we deal with the following family of diffusion equations:

ut = (h(u)ux)x + f (x, u, ux), h �= 0 (1)

in order to find equivalence transformations and some of their differential invariants.
As well known an equivalence transformation for the family under consideration is a non-

degenerate change of dependent and independent variables mapping (1) to another equation
of the same family but with, in general, different functions f and h. Thus solutions of an
equation can be transformed in solutions of an equivalent equation.

Recently the following family

ut = h(x, u)uxx + f (x, u, ux), h �= 0. (2)

has been considered by Ibragimov and Sophocleous [4] in order to find differential invariants.
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As an application of differential invariants, the nonlinear equation

ut = uxx + f (u, ux) (3)

has been studied in [5] in order to find classes of linearizable equations.
We show that the knowledge of the differential invariants is useful in order to find a

subclass of equations (1) which can be brought by an equivalence transformation into a
well-studied specific target equation.

The plan of the paper is the following. In the following section we obtain the equivalence
algebra for family (1). In section 3 we look for differential invariants with respect to
the equivalence group GE . In section 4 we use these latter ones to obtain subclasses of
equations (1) which can be mapped in the well-known family

vt = (vkvx)x. (4)

In section 5 we apply the obtained results to show as is possible to get solutions from the
solutions of the target equation. The conclusions are shown in section 6.

2. Equivalence algebra

As is known an equivalence transformation for the class under consideration is an invertible
transformation of the independent and dependent variables,

t = α(t̂, x̂, v), x = β(t̂, x̂, v), u = γ (t̂, x̂, v), (5)

that changes equations (1) into equations of the same form

vt̂ = (ĥ(v)vx̂)x̂ + f̂ (x̂, v, vx̂), (6)

where in general (ĥ, f̂ ) �= (h, f ). Our goal is to find an equivalence algebra for the family
of equations (1). In order to obtain continuous groups of equivalence transformations of
equations (1) we consider the arbitrary functions f and h as dependent variables and apply,
as suggested by Ovsiannikov [6], the Lie infinitesimal invariance criterion to the following
system:

(h(u)ux)x + f (x, u, ux) − ut = 0,

ft = fut
= 0,

ht = hx = hut
= hux

= 0.

(7)

Then we search for the equivalence operator Y in the following form:

Y = ξ 1∂t + ξ 2∂x + η∂u + ζ1∂ut
+ ζ2∂ux

+ µ1∂f + µ2∂h, (8)

which applied to equations (7) leaves them invariants.
In (8) ξ 1, ξ 2 and η are sought depending on t, x and u, while µ1 and µ2 depend on

t, x, u, ut , ux, f and h, and the components ζ1 and ζ2, as is known, are given by

ζ1 = Dt(η) − utDt(ξ
1) − uxDt(ξ

2),

ζ2 = Dx(η) − utDx(ξ
1) − uxDx(ξ

2).
(9)

The operators Dt and Dx denote the total derivatives with respect to t and x:

Dt = ∂t + ut∂u + utt ∂ut
+ utx∂ux

+ · · · , (10)

Dx = ∂x + ux∂u + utx∂ut
+ uxx∂ux

+ · · · . (11)

The prolongation of operator (8), which we need is

Ỹ = Y + ζ22∂uxx
+ ω1

t ∂ft
+ ω1

ut
∂fut

+ ω2
u∂hu

+ ω2
t ∂ht

+ ω2
x∂hx

+ ω2
ut

∂hut
+ ω2

ux
∂hux

, (12)
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where (see e.g. [7, 8])

ζ22 = Dx(ζ2) − utxDx(ξ
1) − uxxDx(ξ

2), (13)

ω1
t = D̃t (µ1) − fxD̃t (ξ

2) − fuD̃t (η) − fux
D̃t (ζ1), (14)

ω1
ut

= D̃ut
(µ1) − fxD̃ut

(ξ 2) − fuD̃ut
(η) − fux

D̃ut
(ζ1), (15)

ω2
t = D̃t (µ2) − huD̃t (η), (16)

ω2
x = D̃x(µ2) − huD̃x(η), (17)

ω2
ut

= D̃ut
(µ2) − huD̃ut

(η), (18)

ω2
ux

= D̃ux
(µ2) − huD̃ux

(η), (19)

while D̃t , D̃x, D̃u, D̃ut
and D̃ux

are defined by

D̃t = ∂t , (20)

D̃x = ∂x + fx∂f + fxx∂fx
+ · · · , (21)

D̃u = ∂u + fu∂f + hu∂h + fux∂fx
+ huu∂hu

+ fuu∂fu
+ · · · , (22)

D̃ut
= ∂ut

, (23)

D̃ux
= ∂ux

+ fux
∂f + fxux

∂fx
+ fuux

∂fu
+ · · · . (24)

After having applied operator (12) to system (7) and following the well-known algorithm (see
e.g. [7, 9–11]), we found that the class of equations (1) admits an infinite continuous group
GE of equivalence transformations generated by the Lie algebra LE spanned by the operators

Y0 = t∂t − f ∂f − h∂h − ut∂ut
, (25)

Y1 = ∂t , (26)

Y2 = ∂x, (27)

Y3 = x∂x + 2h∂h − ux∂ux
, (28)

Yϕ = ϕ∂u +
(
ϕuf − hu2

xϕuu

)
∂f + ϕuut∂ut

+ ϕuux∂ux
, (29)

where ϕ is an arbitrary function of u.

3. Search for differential invariants

A differential invariant of order s for family (1) is a real-valued function J of the independent
variables t, x, the dependent variable u and its derivatives ut , ux , as well as of the functions
f, h and their derivatives of maximal order s, that is invariant with respect to the equivalence
group GE .

That is, by using the infinitesimal method [8, 12], J is a non-constant function which
satisfy the PDE system

Y
(s)
i (J ) = 0 i = 0, 1, 2, 3, ϕ (30)

where Y
(s)
i are the sth prolongation of Yi .

We seek for differential invariants of zero order, i.e. non-constant functions of the form

J = J (t, x, u, ut , ux, f, h), (31)

which are invariant with respect to the equivalence group GE .
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By applying the invariant test Y (J ) = 0 we do not find differential invariants of zero
order, but the invariant equations h = 0, ut = 0 and ux = 0.

In order to look for differential invariants of first order

J = J (t, x, u, ut , ux, f, h, fx, fu, fux
, hu), (32)

we need the following first prolongation of operator Y:

Y (1) = Y + ω1
x∂fx

+ ω1
u∂fu

+ ω1
ux

∂fux
+ ω2

u∂hu
, (33)

where ω1
x, ω

1
u, ω

1
ux

and ω2
u likewise (14) . . . (19).

Applying the invariant test Y (1)(J ) = 0, after some calculation, we get

J = J (λ1, λ2, λ3), (34)

where

λ1 = ux

u2
t

hfx, (35)

λ2 = 2f − uxfux

2ut

, (36)

λ3 = u2
xhu

ut

. (37)

4. Some classes of equivalent equations

Here, we consider the family of equations

vt = (vkvx)x k ∈ R (38)

belonging to (1). This family has largely been studied in the framework of heat conduction
and porous material [13, 14]. Wide classes of solutions have been found (see e.g. [15, 16])
and for k = −2 it has been linearized [17].

Now, we look for equations of class (1) which are equivalent to (38).
We recall that two equivalent equations of class (1) have the same differential invariants

with respect to GE .
For the target equations (38) we get

λ1 = λ2 = 0, (39)

while

λ3 = u2
xkuk−1

ut

. (40)

So, from (40), two cases arise:

(i) k = 0 and λ3 = 0;
(ii) k �= 0 and λ3 �= 0.

We analyse them separately.

4.1. k = 0

In this case our target becomes

vt = vxx. (41)



On some differential invariants for a family of diffusion equations 8807

So the arbitrary elements f and h of class (1) must satisfy the following conditions:


λ1 ≡ ux

u2
t

hfx = 0

λ2 ≡ 2f − uxfux

2ut

= 0

λ3 ≡ u2
xhu

ut

= 0.

(42)

Then the more general form of equations (1), having the same invariant of the target, is the
generalized potential Burger’s equations

ut = h0uxx + u2
xg(u), (43)

where h0 �= 0 is an arbitrary constant and g is an arbitrary function of u.
Equations (43) are a subclass of the family

ut = h0uxx + g(u)|ux |p−1ux, (44)

widely considered in [18, 19].
Since conditions (42) are invariant with respect to the equivalence group, all equations of

class (43) are transformed by an equivalence transformation into equations of the same form.
So it is possible to find at least an equivalence transformation which maps an equation of

form (43) into equation (41).
To this aim following [5] we use, for instance, an equivalence transformation of the form

t = h0 t̂ , x = h0x̂, u = ψ(v(t̂, x̂)).

By applying this transformation to equation (43) and requiring that the transformed equation
must be of form (41), we get that ψ must be solution of the following differential equation:

ψ ′′

ψ ′ h0 + ψ ′g(ψ) = 0. (45)

Now, we are able to affirm the following.

Theorem 1. An equation belonging to class (1) can be transformed by an equivalence
transformation of the group GE into the linear equation

vt = vxx, (46)

if and only if the function h is a constant and f is given by

f = u2
xg(u). (47)

4.2. k �= 0

In this case, from


λ1 ≡ ux

u2
t

hfx = 0

λ2 ≡ 2f − uxfux

2ut

= 0,

(48)

we get the functional form of f (x, u, ux) which reads

f = u2
xg(u), (49)

with g being an arbitrary function of u.
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It is a simple matter to see that any equation of class (1) having the form

ut = (h(u)ux)x + u2
xg(u) (50)

can be mapped by an equivalence transformation into an equation of the same form.
The equation of form (50) falls in the following known family:

ut = ∇ · (α(u)∇u) + β(u)∇u2 (51)

considered in [20], in the one-dimensional case.
In order to look for the equations of form (50) which can be brought by an equivalence

transformation in the form of the well-known studied subclass (38), we search for differential
invariants for the family of equations (50).

This search implies that we must look for functions of the form

J = J (t, x, u, ut , ux, h, hu, huu, . . . , g, gu, guu, . . .), (52)

which are invariant with respect to the equivalence generator of (50) (which reads)

ϒ = ξ̄ 1∂t + ξ̄ 2∂x + η̄∂u + ζ̄1∂ut
+ ζ̄2∂ux

+ µ̄1∂h + µ̄2∂g. (53)

In order to write the infinitesimal components of ϒ we use the algorithm proposed in
[21, 22]. In fact, by knowing the infinitesimal components of the equivalence generator Y, we
are able to find the corresponding new coordinates ξ̄ 1, ξ̄ 2, η̄, µ̄1, µ̄2 by making the changes
of coordinates

t̄ = t, (54)

x̄ = x, (55)

ū = u, (56)

h̄ = h, (57)

ū2
x̄g(ū) = f (58)

and by requiring their invariance with respect to

Y ∗ ≡ Y + ϒ

≡ ξ 1∂t + ξ 2∂x + η∂u + ζ 1∂ut
+ ζ 2∂ux

+ µ1∂h + µ2∂f

+ ξ̄ 1∂t + ξ̄ 2∂x + η̄∂u + ζ̄ 1∂ut
+ ζ̄ 2∂ux

+ +µ̄1∂h + µ̄2∂g. (59)

In this way, we get

ξ̄ 1 = ξ 1, (60)

ξ̄ 2 = ξ 2, (61)

η̄ = η, (62)

ζ̄ 1 = ζ 1 (63)

ζ̄ 2 = ζ 2 (64)

µ̄1 = µ1 (65)

µ̄2 = g(2c3 − c0 − φu − hφuu). (66)

Then the new equivalence generator for class (50) reads

ϒ = (c1 + c0t)∂t + (c3x + c2)∂x + ϕ(u)∂u + ut (ϕu − c0)∂ut
+ (ϕu − c3)ux∂ux

+ [g(2c3 − c0 − ϕu) − hϕuu]∂g + h(2c3 − c0)∂h. (67)



On some differential invariants for a family of diffusion equations 8809

So, after performing the invariant test, by using the prolongations of the operator ϒ , we get
one first-order differential invariant

α = u2
xhu

ut

≡ λ3 (68)

and one second-order differential invariant

β = u4
x

u2
t

(ghu − hhuu) . (69)

We observe that equation (38) satisfies the following invariant equation:

(k − 1)α2 + kβ ≡ (k − 1)
u4

xh
2
u

u2
t

+ k
u4

x(ghu − hhuu)

u2
t

= 0. (70)

An equation belonging to class (50) can be mapped into an equation of form (38) if the
functions h and g satisfy condition (70), i.e. if

g(u) = hhuu

hu

− k − 1

k
hu, (71)

we can say that there exists at least an equivalence transformation mapping the equations

ut = (h(u)ux)x + u2
x

(
hhuu

hu

− k − 1

k
hu

)
(72)

into (38).
In fact if we consider, for instance, the invertible transformation

u = ψ(v) (73)

by applying it to equations (72), we get

vt = (h(ψ)vx)x + v2
x

[
h

ψ ′′

ψ ′ + ψ ′ hhψψ

hψ

− k − 1

k
ψ ′hψ

]
. (74)

By choosing

ψ = h−1(vk), (75)

we obtain equation (38).
So we showed that it exists at least one invertible transformation between (38) and (72).

We are able, now, to affirm the following.

Theorem 2. An equation belonging to class (1) can be mapped by an equivalence
transformation of the group GE into the well-known equation

vt = (vkvx)x (76)

if and only if the function f is given by

f = u2
x

(
hhuu

hu

− k − 1

k
hu

)
. (77)

5. Applications

In this section we wish to apply the result obtained in section 4.2.
As is well known an equivalence transformation maps solutions into solutions of

transformed equation [10].
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Consequently, the solutions of (38) can be mapped to the solutions of (72) and vice versa.
In the following, we show some subclasses which could be brought to the well-studied

nonlinear diffusion equation (38).

(i) If we put k = −2, (71) becomes

g(u) = hhuu

hu

− 3

2
hu, (78)

then all the equations of form (50) with h(u) and g(u) satisfying the above condition,
following [17], are linearizable.

(ii) If we put k = 3, (71) becomes

g(u) = hhuu

hu

− 2

3
hu. (79)

So it is possible to bring all equations, whose h(u) and g(u) satisfy (79), to the form

vt = (v3vx)x, (80)

well studied as the thin films spreading under gravity equation [23].
(iii) If we put k = 1, (71) becomes

g(u) = hhuu

hu

. (81)

In this case the equation characterized by (81) can be put in the form

vt = (vvx)x (82)

studied as the thin saturated regions in the porous media equation [24].
(iv) If we put k = 6, (71) becomes

g(u) = hhuu

hu

− 5

6
hu. (83)

In this case the equation characterized by (83) can be put in the form

vt = (v6vx)x, (84)

known as the equation for radiative heat transfer by the Marshak waves equation [25].

If we consider the well-known invariant solutions of (38) [15], by denoting them with
v(t, x) and taking into account that u(t, x) = h−1(vk), we get the following.

(i) Stationary solutions

v = (a1x + a2)
1

k+1 , u = h−1
(
(a1x + a2)

k
k+1

)
, k �= −1, (85)

v = a2 ea1x u = h−1((a2 ea1x)−1), k = −1. (86)

(ii) Travelling wave solutions

v = [kλ(λt − x) + a1]1/k, u = h−1(kλ(λt − x) + a1). (87)

(iii) A self-similar solution

v =
{
a1|t − T0| −k

k+2 +
k

2(k + 2)

x2

T0 − t

}1/k

, (88)

u = h−1

(
a1|t − T0| −k

k+2 +
k

2(k + 2)

x2

T0 − t

)
. (89)
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It is worth stressing that we took into consideration the invariant solutions only for the
simplicity sake.

As an example we consider the non-stationary seepage equation in the one-dimensional
case [26],

ut = αγ

m
u

γ

γ +1 uxx, (90)

where m is the porosity of the medium, α is the seepage coefficient, γ is the polytropic
exponent and u is the pressure in the medium.

Equation (90) falls in class (1) with h(u) = αγ

m
u

γ

γ +1 and f (x, u, ux) = − αγ 2

m(γ +1)
u

− 1
γ +1 u2

x .
In order to find the target equation of the form

vt = (vkvx)x, (91)

we consider relation (71) with g(u) = − αγ 2

m(γ +1)
u

− 1
γ +1 , from where we get

− αγ 2

m(γ + 1)
u

− 1
γ +1 = −αγ

kγ − γ + k

mk(γ + 1)
u

− 1
γ +1 , (92)

which implies k = γ .

After observing that h−1(vγ ) = (
m
αγ

) γ +1
γ vγ +1, in our case, by using some of the invariant

solutions of

vt = (vγ vx)x, (93)

we get the following special class of the solutions of equation (90).

(i) Stationary solutions

u =
(

m

αγ

) γ +1
γ

(a1x + a2). (94)

(ii) Travelling wave solutions

u =
(

m

αγ

) γ +1
γ

[γ λ(λt − x) + a1]
γ +1
γ . (95)

(iii) A self-similar solution

u =
(

m

αγ

) γ +1
γ

{
a1|t − T0|

−γ

γ +2 +
γ

2(γ + 2)

x2

T0 − t

} γ +1
γ

. (96)

6. Conclusions

After having found the equivalence transformations for the class of equations under
consideration, we look for some differential invariants of equivalence transformations by
restricting ourselves to those of the first order. We use these latter to characterize the form of
the equations of class (1) equivalent to the equation

ut = (ukux)x. (97)

For k = 0, equation (97) becomes the linear Fourier’s equation, and we showed that it is
possible to find at least an equivalence transformation which maps the following generalized
Burger’s potential equations:

ut = h0uxx + u2
xg(u) (98)

into the linear Fourier’s equation.
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For k �= 0, we showed that equations (97) are equivalent to the following subclasses of
equations:

ut = (h(u)ux)x + u2
x

(
hhuu

hu

− k − 1

k
hu

)
. (99)

In this case also we are able to obtain at least an equivalence transformation which bring (99)
into (97).

Finally, we applied this transformation in order to bring the known solutions of
equations (97) into the solutions of equations (99).
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